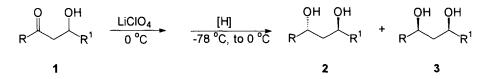
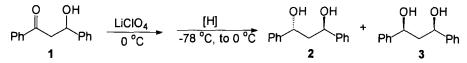


PII: S0040-4039(97)10030-2


DIASTEREOSELECTIVE REDUCTION OF β -HYDROXYKETONES WITH AMINEBORANES IN THE PRESENCE OF LITHIUM PERCHLORATE

Chatla Narayana, M. Rama Reddy, Max Hair and George W. Kabalka*; The Departments of Chemistry and Radiology, The University of Tennessee, Knoxville, TN 37996-1600

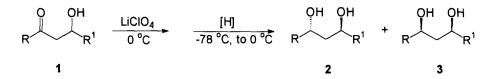
Abstract: The reduction of β -hydroxyketones with amineboranes in the presence of lithium perchlorate produces the corresponding *anti* 1,3-diols as major products. © 1997 Elsevier Science Ltd.


The stereoselective reduction of β -hydroxyketones is an important reaction in organic synthesis. The product *syn* and *anti* 1,3 diols are found in a variety of polyacetate and polypropionate derived natural products.¹ Extensive research has been carried out on the directed reductions of β -hydroxyketones and two generalizations can be made. If the reducing agent can bind to the hydroxy group, an intramolecular transfer of hydride results and the *anti* 1,3 diol is the major product.² On the other hand, when an additive (e.g. Et₂BOMe³, TiCl₄⁴ or BCl₃⁴) is employed to organize the substrate prior to an intermolecular hydride addition, the *syn* isomer is formed predominantly.

Recently we reported the diastereoselective synthesis of *anti* 1,3-diols via the substrate controlled allylboration of β -hydroxy carbonyl compounds.⁵ We now wish to report our preliminary results involving the reduction of β -hydroxyketones with amineboranes in the presence of lithium perchlorate.

The prerequisite β -hydroxyketones were prepared by either the reductive hydrolysis of Δ^2 isoxazolines⁶ or crossed aldol reactions.⁷ Reductions of β -hydroxyketones with various amineboranes were carried out in the presence of lithium perchlorate and the results are summarized in Table 1. Among the amineboranes utilized, *N*,*N*-diethylanilineborane (entry 3) and 2,6-lutidineborane (entry 4) gave highest diastereoselectivity. The reactions of various β -hydroxyketones with *N*,*N*-diethylanilineborane and 2,6lutidineborane are summarized in Table 2. In control studies, we noted that the diastereoselectivity decreased when the reaction was carried out at 0°. The stereoselectivity also decreased when the β hydroxy group was replaced by a methoxy group; the reduction of 3-methoxy-1,3-diphenyl-1-propanone with 2,6-lutidineborane in the presence of LiClO₄ produced an *anti/syn* ratio of only 60:40.

Table 1.



Entry	Reducing Agent	Yield (%) ^{a,b}	Diastereoselectivity
		(2 + 3)	(2:3)
1.	BH ₃ ·THF	92	78:22
2.	Et ₃ N·BH ₃	85	84:16
3.	PhNEt ₂ ·BH ₃	88	98:2
4.	2,6-lutidine BH ₃	86	99:1 ^d
5.	t-BuNH₂ [,] BH₃	62	92:8
6.	NaBH₄ THF MeOH	92	25:75

^a Reaction carried out by mixing LiClO₄ and the carbonyl reagent in THF at 0 °C, cooling the mixture to -78 ° C, adding the hydride and then allowing the mixture to warm to 0 °C. ^b Isolated yield of the diastereomeric mixture which gave satisfactory analytical and spectral data. ^c Determined by NMR analysis. ^d In the absence of the LiClO₄, the ratio of **2:3** was 85:15.

In a typical procedure LiClO₄ (5.0 *M* in Et₂O, 2.5 mmol) is added to the β -hydroxyketone (1.0 mmol) in THF (20 ml) and the mixture stirred at 0°C for 10 min. The ice bath is then replaced by a dry-ice acetone bath (-78°C) and the amineborane (1.2 mmol) is added. The temperature is slowly raised to 0°C (over 2 h) and stirred at that temperature for 1 h. The reaction is quenched with dilute HCl (1 *N*, 10 ml) and the products extracted into ethyl acetate (3 x 25 ml). The combined organic extracts are washed with saturated aqueous NaHCO₃, brine and then dried (MgSO₄) prior to solvent removal (reduced pressure). The product is purified by column chromatography (silica gel, ethyl acetate-hexanes) and the diastereoselectivity determined by ¹H and ¹³C NMR.⁸

Table 2.

Entry	R	R ¹	Yield (%) ^{*,b}	Diastereoselectivity
			(2 + 3)	(2:3)
1.	Ph₫	CH₂Ph	84	96:4
2.	Ph⁴	CH₂Ph	88	98:2
3.	Ph⁴	CH(CH ₃)₂	85	89:11
4.	Ph [€]	CH(CH ₃)₂	86	99:1
5.	CH₃ď	Ph	88	54:46
6.	CH₃°	Ph	87	89:11
7.	C ₂ H ₅ °	Ph	88	72:28

^a Reaction carried out by mixing LiClO₄ and the carbonyl reagent in THF at 0 °C, cooling the mixture to -78 °C, adding the hydride and then allowing the mixture to warm to 0 °C. ^bIsolated yield of the diastereomeric mixture which gave satisfactory analytical and spectral data. ^cDetermined by NMR analysis. ^dPhNEt₂ ·BH₃ was used. ^e 2,6-lutidineborane used.

Although the mechanism of the reaction remains to be delineated, the *anti*-selectivity suggests that the boron complexes may be reacting with the β -hydroxy group and then delivering a hydride intramolecularly, the lithium ion presumably increases the diastereoselectivity of the reactions by coordinating with the carbonyl group.⁹ The fact that hindered, aromatic amineboranes are hydrolized more readily than their unhindered counterparts¹⁰ would support such a hypothesis along with the observation, noted earlier, that replacement of the β -hydroxy substituent by a methoxy group leads to a dramatic decrease in the *anti/syn* product ratio. The reactions are apparently not proceeding via a cyclic, lithium-chelated intermediate since the *syn* product would have been expected.¹¹ The *anti*-selective reductions described herein complement the recently reported *syn*-selective reductions which were achieved using various amineboranes in the presence of TiCl₄ or BCl₃.⁴

Acknowledgements

We wish to thank the U.S. Department of Energy and the Robert H. Cole Foundation for research support.

References

- (a) Bonini, C.; Racioppi, R.; Righi, G.; and Rossi, L. *Tetrahedron Asymmetry.* **1994**, *5*, 173. (b)
 Evans, D. A.; Hoveyda, A. H. *J. Am. Chem. Soc.* **1990**, *112*, 6447. (c) Oishi, T.; Nataka, T. *Synthesis* **1990**, 635.
- 2. Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307.
- 3. Chen, K. M.; Hardtmann, G. E.; Prasad, K.; Repic, O.; Shapiro, M. J. *Tetrahedron Lett.* **1987**, *28*, 155.
- 4. Sarko, C. R.; Calliber, S. E.; Knorr, A. L. and DiMare, M. J. Org. Chem. 1996, 61, 868.
- 5. Kabalka, G. W.; Narayana, C.; Reddy, N. K. Tetrahedron Lett. 1996, 37, 2181.
- 6. Curran, D. P. J. Am. Chem. Soc. 1983, 104, 4024.
- 7. Hasegawa, E.; Ishiyama, K.; Horaguchi, T. and Shimizu, T. J. Org. Chem. 1991, 56, 1631.
- 8. Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511.
- 9. Evans, D. A.; Chapman, K. T. Tetrahedron Lett. 1986, 27, 5939.
- 10. Brown, H. C.; Murray, L. T.; Inorg. Chem. 1984, 23, 2746.
- (a) Reetz, M.; Raguse, B.; Marth, C. F.; Hugel, H. M.; Bach, T.; Fox, D. N. A. *Tetrahedron* 1992, 48, 5731.
 (b) Henry, Jr. K. J.; Grieco, P. A.; Jagoe, C. T. *Tetrahedron Lett* 1992, 33, 1817.

(Received in USA 13 August 1997; accepted 28 August 1997)